Large Scale Geometry of Graphs of Polynomial Growth

Joint work with Anton Bernshteyn

```
Jing Yu
jingyu@gatech.edu
Georgia Institute of Technology
McGill Descriptive Dynamics and Combinatorics Seminar
Dec 5, 2023
```


Graphs of polynomial growth

Graphs of polynomial growth

All metrics are extended (i.e., distance can be infinite).

Graphs of polynomial growth

All metrics are extended (i.e., distance can be infinite). The growth function of a graph $G: \gamma_{G}(r):=\sup _{u \in V(G)}\left|B_{G}(u, r)\right|$.

Definition
A graph G is of polynomial growth if γ_{G} is bounded by polynomial.

Graphs of polynomial growth

All metrics are extended (i.e., distance can be infinite).
The growth function of a graph $G: \gamma_{G}(r):=\sup _{u \in V(G)}\left|B_{G}(u, r)\right|$.
Definition
A graph G is of polynomial growth if γ_{G} is bounded by polynomial.
For $r \geqslant 1$, define $\rho(G, r):=\frac{\log \gamma_{G}(r)}{\log (r+1)}$. $\rightsquigarrow \quad \gamma_{G}(r)=(r+1)^{\rho(G, r)}$.

Graphs of polynomial growth

All metrics are extended (i.e., distance can be infinite).
The growth function of a graph $G: \gamma_{G}(r):=\sup _{u \in V(G)}\left|B_{G}(u, r)\right|$.
Definition
A graph G is of polynomial growth if γ_{G} is bounded by polynomial.
For $r \geqslant 1$, define $\rho(G, r):=\frac{\log \gamma_{G}(r)}{\log (r+1)}$. $\rightsquigarrow \quad \gamma_{G}(r)=(r+1)^{\rho(G, r)}$.
Growth rates:

Graphs of polynomial growth

All metrics are extended (i.e., distance can be infinite).
The growth function of a graph $G: \gamma_{G}(r):=\sup _{u \in V(G)}\left|B_{G}(u, r)\right|$.
Definition
A graph G is of polynomial growth if γ_{G} is bounded by polynomial.
For $r \geqslant 1$, define $\rho(G, r):=\frac{\log \gamma_{G}(r)}{\log (r+1)}$. $\rightsquigarrow \quad \gamma_{G}(r)=(r+1)^{\rho(G, r)}$.
Growth rates:

- exact growth rate: $\rho_{\mathrm{ex}}(G):=\sup _{r \geqslant 1} \rho(G, r)$.

Graphs of polynomial growth

All metrics are extended (i.e., distance can be infinite).
The growth function of a graph $G: \gamma_{G}(r):=\sup _{u \in V(G)}\left|B_{G}(u, r)\right|$.

Definition

A graph G is of polynomial growth if γ_{G} is bounded by polynomial.
For $r \geqslant 1$, define $\rho(G, r):=\frac{\log \gamma_{G}(r)}{\log (r+1)}$. $\rightsquigarrow \quad \gamma_{G}(r)=(r+1)^{\rho(G, r)}$.
Growth rates:

- exact growth rate: $\rho_{\mathrm{ex}}(G):=\sup _{r \geqslant 1} \rho(G, r)$.
- asymptotic growth rate: $\rho_{\text {as }}(G):=\lim \sup _{r \rightarrow \infty} \rho(G, r)$.

Remarks:

- Polynomial growth $\Longleftrightarrow \rho_{\text {ex }}(G)<\infty \Longleftrightarrow \rho_{\text {as }}(G)<\infty$.

Graphs of polynomial growth

All metrics are extended (i.e., distance can be infinite).
The growth function of a graph $G: \gamma_{G}(r):=\sup _{u \in V(G)}\left|B_{G}(u, r)\right|$.

Definition

A graph G is of polynomial growth if γ_{G} is bounded by polynomial.
For $r \geqslant 1$, define $\rho(G, r):=\frac{\log \gamma_{G}(r)}{\log (r+1)} . \rightsquigarrow \quad \gamma_{G}(r)=(r+1)^{\rho(G, r)}$.
Growth rates:

- exact growth rate: $\rho_{\mathrm{ex}}(G):=\sup _{r \geqslant 1} \rho(G, r)$.
- asymptotic growth rate: $\rho_{\text {as }}(G):=\lim \sup _{r \rightarrow \infty} \rho(G, r)$.

Remarks:

- Polynomial growth $\Longleftrightarrow \rho_{\text {ex }}(G)<\infty \Longleftrightarrow \rho_{\text {as }}(G)<\infty$.
- $\rho_{\text {ex }}(G) \geqslant \rho_{\mathrm{as}}(G)$ for all G.

Graphs of polynomial growth

All metrics are extended (i.e., distance can be infinite).
The growth function of a graph $G: \gamma_{G}(r):=\sup _{u \in V(G)}\left|B_{G}(u, r)\right|$.

Definition

A graph G is of polynomial growth if γ_{G} is bounded by polynomial.
For $r \geqslant 1$, define $\rho(G, r):=\frac{\log \gamma_{G}(r)}{\log (r+1)}$. $\rightsquigarrow \quad \gamma_{G}(r)=(r+1)^{\rho(G, r)}$.
Growth rates:

- exact growth rate: $\rho_{\mathrm{ex}}(G):=\sup _{r \geqslant 1} \rho(G, r)$.
- asymptotic growth rate: $\rho_{\text {as }}(G):=\lim \sup _{r \rightarrow \infty} \rho(G, r)$.

Remarks:

- Polynomial growth $\Longleftrightarrow \rho_{\text {ex }}(G)<\infty \Longleftrightarrow \rho_{\text {as }}(G)<\infty$.
- $\rho_{\text {ex }}(G) \geqslant \rho_{\mathrm{as}}(G)$ for all G.
- If G is finite, then $\rho_{\mathrm{as}}(G)=0$, while $\rho_{\mathrm{ex}}(G)$ can be arbitrarily large.

Examples: Grid_{n} and $\mathrm{Grid}_{n, \infty}$

G	$\mathrm{V}(\mathrm{G})$	$\mathrm{E}(\mathrm{G})$		
Grid_{n}	\mathbb{Z}^{n}	$\left\{u v: u, v \in \mathbb{Z}^{n},\\|u-v\\|_{1}=1\right\}$		
$\operatorname{Grid}_{n, \infty}$	\mathbb{Z}^{n}	$\left\{u v: u, v \in \mathbb{Z}^{n},\\|u-v\\|_{\infty}=1\right\}$		

Examples: Grid_{n} and $\mathrm{Grid}_{n, \infty}$

G	$\mathrm{V}(\mathrm{G})$	$\mathrm{E}(\mathrm{G})$		
Grid_{n}	\mathbb{Z}^{n}	$\left\{u v: u, v \in \mathbb{Z}^{n},\\|u-v\\|_{1}=1\right\}$		
$\operatorname{Grid}_{n, \infty}$	\mathbb{Z}^{n}	$\left\{u v: u, v \in \mathbb{Z}^{n},\\|u-v\\|_{\infty}=1\right\}$		

Figure: Fragments of the graphs Grid_{2} (left) and $\operatorname{Grid}_{2, \infty}$ (right).

Examples: Grid_{n} and $\mathrm{Grid}_{n, \infty}$

G	$\mathrm{V}(\mathrm{G})$	$\mathrm{E}(\mathrm{G})$		
Grid_{n}	\mathbb{Z}^{n}	$\left\{u v: u, v \in \mathbb{Z}^{n},\\|u-v\\|_{1}=1\right\}$		
$\operatorname{Grid}_{n, \infty}$	\mathbb{Z}^{n}	$\left\{u v: u, v \in \mathbb{Z}^{n},\\|u-v\\|_{\infty}=1\right\}$		

Figure: Fragments of the graphs Grid_{2} (left) and $\mathrm{Grid}_{2, \infty}$ (right).

$$
\rho_{\mathrm{ex}}=\Theta(n), \quad \rho_{\mathrm{as}}=n
$$

Groups of polynomial growth

A finitely generated group Γ is of polynomial growth if its Cayley graph with respect to some (equivalently, every) finite generating set is of polynomial growth.

Groups of polynomial growth

A finitely generated group Γ is of polynomial growth if its Cayley graph with respect to some (equivalently, every) finite generating set is of polynomial growth.

The asymptotic growth rate does not depend on the choice of the generating set, while the exact growth rate does.

Groups of polynomial growth

A finitely generated group Γ is of polynomial growth if its Cayley graph with respect to some (equivalently, every) finite generating set is of polynomial growth.

The asymptotic growth rate does not depend on the choice of the generating set, while the exact growth rate does.

Grid graphs: \mathbb{Z}^{n} is of polynomial growth

Groups of polynomial growth

A finitely generated group Γ is of polynomial growth if its Cayley graph with respect to some (equivalently, every) finite generating set is of polynomial growth.

The asymptotic growth rate does not depend on the choice of the generating set, while the exact growth rate does.

Grid graphs: \mathbb{Z}^{n} is of polynomial growth

Theorem (Gromov '81)

A finitely generated group Γ is of polynomial growth if and only if it is virtually nilpotent.

Asymptotic dimension

asdim in terms of padded decompositions

Given a partition \mathcal{P} of a set X and an element $x \in X$, we let $[x]_{\mathcal{P}}$ denote the part containing x.

asdim in terms of padded decompositions

Given a partition \mathcal{P} of a set X and an element $x \in X$, we let $[x]_{\mathcal{P}}$ denote the part containing x.

An r-padded decomposition of a locally finite graph G with m layers is a family $\left\{\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{m}\right\}$ of partitions of $V(G)$ into finite sets of uniformly bounded diameter such that for all $u \in V(G)$, there is some \mathcal{P}_{i} such that $B_{G}(u, r) \subseteq[u]_{\mathcal{P}_{i}}$.

asdim in terms of padded decompositions

Given a partition \mathcal{P} of a set X and an element $x \in X$, we let $[x]_{\mathcal{P}}$ denote the part containing x.

An r-padded decomposition of a locally finite graph G with m layers is a family $\left\{\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{m}\right\}$ of partitions of $V(G)$ into finite sets of uniformly bounded diameter such that for all $u \in V(G)$, there is some \mathcal{P}_{i} such that $B_{G}(u, r) \subseteq[u]_{\mathcal{P}_{i}}$.

Definition (Gromov '93)

The asymptotic dimension of a locally finite graph G, in symbols asdim (G), is the minimum $d \in \mathbb{N}$ (if it exists) such that for every $r \in \mathbb{N}, G$ has an r-padded decomposition with $d+1$ layers.

Examples

Examples

Example

- $\operatorname{asdim} \mathbb{R}^{n}=\operatorname{asdim} \mathbb{Z}^{n}=n$.

Examples

Example

- $\operatorname{asdim} \mathbb{R}^{n}=\operatorname{asdim} \mathbb{Z}^{n}=n$.
- Trees have asdim ≤ 1.

Examples

Example

- $\operatorname{asdim} \mathbb{R}^{n}=\operatorname{asdim} \mathbb{Z}^{n}=n$.
- Trees have asdim ≤ 1.
- Bonamy-Bousquet-Esperet-Groenland-Liu-Pirot-Scott, Jørgensen-Lang: Planar graphs have asdim ≤ 2.

Examples

Example

- $\operatorname{asdim} \mathbb{R}^{n}=\operatorname{asdim} \mathbb{Z}^{n}=n$.
- Trees have asdim ≤ 1.
- Bonamy-Bousquet-Esperet-Groenland-Liu-Pirot-Scott, Jørgensen-Lang: Planar graphs have asdim ≤ 2.
- Papasoglu: Every graph G satisfies $\operatorname{asdim}(G) \leqslant \rho_{\text {as }}(G)$.

Examples

Example

- $\operatorname{asdim} \mathbb{R}^{n}=\operatorname{asdim} \mathbb{Z}^{n}=n$.
- Trees have asdim ≤ 1.
- Bonamy-Bousquet-Esperet-Groenland-Liu-Pirot-Scott, Jørgensen-Lang: Planar graphs have asdim ≤ 2.
- Papasoglu: Every graph G satisfies $\operatorname{asdim}(G) \leqslant \rho_{\text {as }}(G)$.

$\operatorname{asdim}(\mathbb{R})=1$

$\operatorname{asdim}\left(\mathbb{R}^{2}\right)=2$

$\operatorname{asdim}\left(\mathbb{R}^{2}\right)=2$

$\operatorname{asdim}\left(\mathbb{R}^{2}\right)=2$

asdim $^{\alpha}$ in terms of padded decompositions

asdim $^{\alpha}$ in terms of padded decompositions

An (r, D)-padded decomposition of a locally finite graph G with m layers is a family $\left\{\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{m}\right\}$ of partitions of $V(G)$ into finite sets of diameter bounded by D such that for all $u \in V(G)$, there is some \mathcal{P}_{i} such that $B_{G}(u, r) \subseteq[u]_{\mathcal{P}_{i}}$.

asdim $^{\alpha}$ in terms of padded decompositions

An (r, D)-padded decomposition of a locally finite graph G with m layers is a family $\left\{\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{m}\right\}$ of partitions of $V(G)$ into finite sets of diameter bounded by D such that for all $u \in V(G)$, there is some \mathcal{P}_{i} such that $B_{G}(u, r) \subseteq[u]_{\mathcal{P}_{i}}$.

Definition

Let $\alpha>1$. The asymptotic α-power dimension of a locally finite graph G, in symbols $\operatorname{asdim}^{\alpha}(G)$, is the minimum $d \in \mathbb{N}$ (if it exists) such that for every large $r \in \mathbb{N}, G$ has an $\left(r, r^{\alpha}\right)$-padded decomposition with $d+1$ layers.

$$
\operatorname{asdim}(G) \leq \operatorname{asdim}^{\alpha}(G)
$$

asdim ${ }^{\alpha}$ of graphs of polynomial growth

Theorem (Papasoglu '21)
Every graph G satisfies asdim $(G) \leqslant\left\lfloor\rho_{\text {as }}(G)\right\rfloor$.

asdim ${ }^{\alpha}$ of graphs of polynomial growth

Theorem (Papasoglu '21)
Every graph G satisfies asdim $(G) \leqslant\left\lfloor\rho_{\text {as }}(G)\right\rfloor$.

- This is tight.

$\operatorname{asdim}^{\alpha}$ of graphs of polynomial growth

```
Theorem (Papasoglu '21)
Every graph \(G\) satisfies asdim \((G) \leqslant\left\lfloor\rho_{\text {as }}(G)\right\rfloor\).
```

- This is tight.
- Papasoglu's proof is a clever induction on $\left\lfloor\rho_{\text {as }}(G)\right\rfloor$.

asdim $^{\alpha}$ of graphs of polynomial growth

Theorem (Papasoglu '21)

Every graph G satisfies asdim $(G) \leqslant\left\lfloor\rho_{\text {as }}(G)\right\rfloor$.

- This is tight.
- Papasoglu's proof is a clever induction on $\left\lfloor\rho_{\mathrm{as}}(G)\right\rfloor$.
- We show some stronger result:

Theorem (Bernshteyn-Y.)

Every graph G satisfies $\operatorname{asdim}^{\alpha}(G) \leqslant\left\lfloor\rho_{\text {as }}(G)\right\rfloor$ for all $\alpha>\frac{\left\lfloor\rho_{\text {as }}(G)\right\rfloor+1}{\left\lfloor\rho_{\text {as }}(G)\right\rfloor+1-\rho_{\text {as }}(G)}$.

$\operatorname{asdim}^{\alpha}$ of graphs of polynomial growth

Theorem (Papasoglu '21)

Every graph G satisfies asdim $(G) \leqslant\left\lfloor\rho_{\text {as }}(G)\right\rfloor$.

- This is tight.
- Papasoglu's proof is a clever induction on $\left\lfloor\rho_{\mathrm{as}}(G)\right\rfloor$.
- We show some stronger result:

Theorem (Bernshteyn-Y.)

Every graph G satisfies $\operatorname{asdim}^{\alpha}(G) \leqslant\left\lfloor\rho_{\text {as }}(G)\right\rfloor$ for all $\alpha>\frac{\left\lfloor\rho_{\text {as }}(G)\right\rfloor+1}{\left\lfloor\rho_{\text {as }}(G)\right\rfloor+1-\rho_{\text {as }}(G)}$.

- Moreover, our proof approach also works in the setting of Borel graphs and yields a Borel version of this theorem.

Borel graphs

Definition

A graph G is Borel if $V(G)$ is a Polish (or standard Borel) space and $E(G)$ is a Borel subset of $V(G) \times V(G)$.

Borel graphs

Definition

A graph G is Borel if $V(G)$ is a Polish (or standard Borel) space and $E(G)$ is a Borel subset of $V(G) \times V(G)$.

Example

Let Γ be a group with a finite generating set $S \subseteq \Gamma$.
For a Borel action $\Gamma \curvearrowright X$ on a Polish space X, define the Schreier graph Sch $(X, S): V=X, E=\{\{x, \sigma \cdot x\}: x \in X, \sigma \in S, \sigma \cdot x \neq x\}$.

Components of $\operatorname{Sch}(X, S) \rightsquigarrow$ orbits of the action $\Gamma \curvearrowright X$.
If the action $\Gamma \curvearrowright X$ is free, every component of $\operatorname{Sch}(X, S)$ is isomorphic to the Cayley graph of Γ.

Borel asymptotic dimension

A partition \mathcal{P} of a Polish space X into finite sets is Borel if the set $\left\{(x, y) \in X^{2}:[x]_{\mathcal{P}}=[y]_{\mathcal{P}}\right\}$ is Borel.

Borel asymptotic dimension

A partition \mathcal{P} of a Polish space X into finite sets is Borel if the set $\left\{(x, y) \in X^{2}:[x]_{\mathcal{P}}=[y]_{\mathcal{P}}\right\}$ is Borel.

Definition

The Borel asymptotic dimension of a locally finite Borel graph G, in symbols $\operatorname{asdim}_{\mathrm{B}}(G)$ is the minimum $d \in \mathbb{N}$ (if it exists) such that for every $r \in \mathbb{N}, G$ has a Borel r-padded decomposition with $d+1$ layers.

Borel asymptotic dimension

A partition \mathcal{P} of a Polish space X into finite sets is Borel if the set $\left\{(x, y) \in X^{2}:[x]_{\mathcal{P}}=[y]_{\mathcal{P}}\right\}$ is Borel.

Definition

The Borel asymptotic dimension of a locally finite Borel graph G, in symbols $\operatorname{asdim}_{\mathrm{B}}(G)$ is the minimum $d \in \mathbb{N}$ (if it exists) such that for every $r \in \mathbb{N}, G$ has a Borel r-padded decomposition with $d+1$ layers.

- Introduced by Conley, Jackson, Marks, Seward, and Tucker-Drob in 2020.

Borel asymptotic dimension

A partition \mathcal{P} of a Polish space X into finite sets is Borel if the set $\left\{(x, y) \in X^{2}:[x]_{\mathcal{P}}=[y]_{\mathcal{P}}\right\}$ is Borel.

Definition

The Borel asymptotic dimension of a locally finite Borel graph G, in symbols $\operatorname{asdim}_{\mathrm{B}}(G)$ is the minimum $d \in \mathbb{N}$ (if it exists) such that for every $r \in \mathbb{N}, G$ has a Borel r-padded decomposition with $d+1$ layers.

- Introduced by Conley, Jackson, Marks, Seward, and Tucker-Drob in 2020.
- $\operatorname{asdim}(G) \leqslant \operatorname{asdim}_{B}(G)$.

Borel asymptotic dimension

A partition \mathcal{P} of a Polish space X into finite sets is Borel if the set $\left\{(x, y) \in X^{2}:[x]_{\mathcal{P}}=[y]_{\mathcal{P}}\right\}$ is Borel.

Definition

The Borel asymptotic dimension of a locally finite Borel graph G, in symbols $\operatorname{asdim}_{\mathrm{B}}(G)$ is the minimum $d \in \mathbb{N}$ (if it exists) such that for every $r \in \mathbb{N}, G$ has a Borel r-padded decomposition with $d+1$ layers.

- Introduced by Conley, Jackson, Marks, Seward, and Tucker-Drob in 2020.
- $\operatorname{asdim}(G) \leqslant \operatorname{asdim}_{\mathrm{B}}(G)$.
- If $\operatorname{asdim}_{\mathrm{B}}(G)<\infty$, then $\operatorname{asdim}_{\mathrm{B}}(G)=\operatorname{asdim}(G)$.

Borel asymptotic α-power dimension

A partition \mathcal{P} of a Polish space X into finite sets is Borel if the set $\left\{(x, y) \in X^{2}:[x]_{\mathcal{P}}=[y]_{\mathcal{P}}\right\}$ is Borel.

Borel asymptotic α-power dimension

A partition \mathcal{P} of a Polish space X into finite sets is Borel if the set $\left\{(x, y) \in X^{2}:[x]_{\mathcal{P}}=[y]_{\mathcal{P}}\right\}$ is Borel.

Definition

Let $\alpha>1$. The Borel asymptotic α-power dimension of a locally finite Borel graph G, in symbols asdim ${ }_{\mathrm{B}}^{\alpha}(G)$ is the minimum $d \in \mathbb{N}$ (if it exists) such that for every large $r \in \mathbb{N}, G$ has a Borel $\left(r, r^{\alpha}\right)$-padded decomposition with $d+1$ layers.

Borel asymptotic α-power dimension

A partition \mathcal{P} of a Polish space X into finite sets is Borel if the set $\left\{(x, y) \in X^{2}:[x]_{\mathcal{P}}=[y]_{\mathcal{P}}\right\}$ is Borel.

Definition

Let $\alpha>1$. The Borel asymptotic α-power dimension of a locally finite Borel graph G, in symbols asdim ${ }_{\mathrm{B}}^{\alpha}(G)$ is the minimum $d \in \mathbb{N}$ (if it exists) such that for every large $r \in \mathbb{N}, G$ has a Borel $\left(r, r^{\alpha}\right)$-padded decomposition with $d+1$ layers.

Theorem (Bernshteyn-Y. '23)
Every locally finite Borel graph G satisfies $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G) \leqslant\left\lfloor\rho_{\mathrm{as}}(G)\right\rfloor$ for all
$\alpha>\frac{\left\lfloor\rho_{\mathrm{as}}(G)\right\rfloor+1}{\left\lfloor\rho_{\mathrm{as}}(G)\right\rfloor+1-\rho_{\mathrm{as}}(G)}$.

Hyperfiniteness and Marks' question

Definition (Weiss '84, Slaman-Steel '88)
A Borel graph is hyperfinite if there is an increasing sequence $G_{0} \subseteq G_{1} \subseteq G_{2} \subseteq \ldots$ of Borel subgraphs of G with finite components such that $G=\bigcup_{i=0}^{\infty} G_{i}$.

Hyperfiniteness and Marks' question

Definition (Weiss '84, Slaman-Steel '88)
A Borel graph is hyperfinite if there is an increasing sequence $G_{0} \subseteq G_{1} \subseteq G_{2} \subseteq \ldots$ of Borel subgraphs of G with finite components such that $G=\bigcup_{i=0}^{\infty} G_{i}$.

Question (Marks '22)
Is every Borel graph of polynomial growth hyperfinite?

Hyperfiniteness and Marks' question

Definition (Weiss '84, Slaman-Steel '88)

A Borel graph is hyperfinite if there is an increasing sequence $G_{0} \subseteq G_{1} \subseteq G_{2} \subseteq \ldots$ of Borel subgraphs of G with finite components such that $G=\bigcup_{i=0}^{\infty} G_{i}$.

Question (Marks '22)
Is every Borel graph of polynomial growth hyperfinite?

Theorem (Conley-Jackson-Marks-Seward-Tucker-Drob '20)
Let G be a locally finite Borel graph. If $\operatorname{asdim}_{\mathrm{B}}(G)<\infty$, then G is hyperfinite.

Hyperfiniteness and Marks' question

Theorem (Conley-Jackson-Marks-Seward-Tucker-Drob '20)
Let G be a locally finite Borel graph. If $\operatorname{asdim}_{\mathrm{B}}(G)<\infty$, then G is hyperfinite.

Hyperfiniteness and Marks' question

Theorem (Conley-Jackson-Marks-Seward-Tucker-Drob '20)
Let G be a locally finite Borel graph. If asdim $\operatorname{an}_{\mathrm{B}}(G)<\infty$, then G is hyperfinite.

Theorem (Bernshteyn-Y. '23)

Every locally finite Borel graph G satisfies $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G) \leqslant \rho_{\mathrm{as}}(G)$ for all $\alpha>\frac{\left\lfloor\rho_{\mathrm{as}}(G)\right\rfloor+1}{\left\lfloor\rho_{\mathrm{as}}(G)\right\rfloor+1-\rho_{\mathrm{as}}(G)}$.

Hyperfiniteness and Marks' question

Theorem (Conley-Jackson-Marks-Seward-Tucker-Drob '20)
Let G be a locally finite Borel graph. If $\operatorname{asdim}_{\mathrm{B}}(G)<\infty$, then G is hyperfinite.

Theorem (Bernshteyn-Y. '23)
Every locally finite Borel graph G satisfies $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G) \leqslant \rho_{\mathrm{as}}(G)$ for all
$\alpha>\frac{\left\lfloor\rho_{\text {as }}(G)\right\rfloor+1}{\left\lfloor\rho_{\text {as }}(G)\right\rfloor+1-\rho_{\text {as }}(G)}$.
Since $\operatorname{asdim}_{\mathrm{B}}(G) \leq \operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)$, we have
Corollary (Bernshteyn-Y. '23)
Every Borel graph of polynomial growth is hyperfinite.

Embeddings into grids

Embedding graphs of polynomial growth into grids

Conjecture (Levin-Linial-London-Rabinovich '95)
If G is a connected graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$, then

1. G is isomorphic to a subgraph of $\operatorname{Grid}_{n, \infty}$ for some $n<\infty$;
2. moreover, one can take $n=O(\rho)$.

Embedding graphs of polynomial growth into grids

Conjecture (Levin-Linial-London-Rabinovich '95)

If G is a connected graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$, then

1. G is isomorphic to a subgraph of $\operatorname{Grid}_{n, \infty}$ for some $n<\infty$;
2. moreover, one can take $n=O(\rho)$.

Theorem (Krauthgamer-Lee '07)

If G is a connected graph with $\rho_{\text {ex }}(G)=\rho<\infty$, then

1. G is isomorphic to a subgraph of $\mathrm{Grid}_{n, \infty}$ with $n=O(\rho \log \rho)$;
2. the bound $O(\rho \log \rho)$ is optimal.

Embedding graphs of polynomial growth into grids

Conjecture (Levin-Linial-London-Rabinovich '95)
If G is a connected graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$, then

1. G is isomorphic to a subgraph of $\operatorname{Grid}_{n, \infty}$ for some $n<\infty$;
2. moreover, one can take $n=O(\rho)$.

Theorem (Krauthgamer-Lee '07)

If G is a connected graph with $\rho_{\text {ex }}(G)=\rho<\infty$, then

1. G is isomorphic to a subgraph of $\mathrm{Grid}_{n, \infty}$ with $n=O(\rho \log \rho)$;
2. the bound $O(\rho \log \rho)$ is optimal.

Question (Papasoglu '21)

Let G be a graph of polynomial growth rate ρ. Is there a coarse embedding $f: G \rightarrow \operatorname{Grid}_{n, \infty}$ with $n=O(\rho \log \rho)$?

Coarse embeddings

Definition (Gromov '93)

Given a pair of metric spaces $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$, a mapping $f: X \rightarrow Y$ is called a coarse embedding if there exist non-decreasing functions $b, B:[0, \infty] \rightarrow[0, \infty]$ such that:

- $b(\infty)=\infty$ and $B(x)<\infty$ for $x<\infty$;
- for all $u, v \in X, b\left(d_{X}(u, v)\right) \leqslant d_{Y}(f(u), f(v)) \leqslant B\left(d_{X}(u, v)\right)$.

Coarse embeddings

Definition (Gromov '93)

Given a pair of metric spaces $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$, a mapping $f: X \rightarrow Y$ is called a coarse embedding if there exist non-decreasing functions $b, B:[0, \infty] \rightarrow[0, \infty]$ such that:

- $b(\infty)=\infty$ and $B(x)<\infty$ for $x<\infty$;
- for all $u, v \in X, b\left(d_{X}(u, v)\right) \leqslant d_{Y}(f(u), f(v)) \leqslant B\left(d_{X}(u, v)\right)$.
- Let G be the Baumslag-Solitar group $B S(1,2)=\left\langle a, t \mid t^{-1} a t=a^{2}\right\rangle$. Let H be $\langle a\rangle$. Then the inclusion $i: H \rightarrow G$ is a coarse embedding:
We can take $b(x)=\log x$ and $B(x)=x$.

Coarse embeddings

Definition (Gromov '93)

Given a pair of metric spaces $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$, a mapping $f: X \rightarrow Y$ is called a coarse embedding if there exist non-decreasing functions $b, B:[0, \infty] \rightarrow[0, \infty]$ such that:

- $b(\infty)=\infty$ and $B(x)<\infty$ for $x<\infty$;
- for all $u, v \in X, b\left(d_{X}(u, v)\right) \leqslant d_{Y}(f(u), f(v)) \leqslant B\left(d_{X}(u, v)\right)$.
- Let G be the Baumslag-Solitar group $B S(1,2)=\left\langle a, t \mid t^{-1} a t=a^{2}\right\rangle$. Let H be $\langle a\rangle$. Then the inclusion $i: H \rightarrow G$ is a coarse embedding:
We can take $b(x)=\log x$ and $B(x)=x$.
- Generally, let G be a finitely generated group and let H be a finitely generated subgroup of G. Then the inclusion $i: H \rightarrow G$ is a coarse embedding.
- A coarse embedding may be not injective, but it is asymptotically injective: preimages of points have uniformly bounded diameter.

Coarse embeddings into $\mathrm{Grid}_{n, \infty}$

Coarse embedding: $b\left(d_{X}(u, v)\right) \leqslant d_{Y}(f(u), f(v)) \leqslant B\left(d_{X}(u, v)\right)$.

Theorem (Bernshteyn-Y. '23)

If G be a connected graph with $\rho_{\mathrm{as}}(G)=\rho<\infty$, then for every $\epsilon>0$ there is a coarse embedding f of G into $\operatorname{Grid}_{n, \infty}$ with $n=O_{\epsilon}(\rho)$, and

$$
b(r)=\Omega_{G, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=r .
$$

Coarse embeddings into $\mathrm{Grid}_{n, \infty}$

Coarse embedding: $b\left(d_{X}(u, v)\right) \leqslant d_{Y}(f(u), f(v)) \leqslant B\left(d_{X}(u, v)\right)$.

Theorem (Bernshteyn-Y. '23)

If G be a connected graph with $\rho_{\mathrm{as}}(G)=\rho<\infty$, then for every $\epsilon>0$ there is a coarse embedding f of G into $\operatorname{Grid}_{n, \infty}$ with $n=O_{\epsilon}(\rho)$, and

$$
b(r)=\Omega_{G, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=r .
$$

- Confirm Levin-Linial-London-Rabinovich conjecture in the asympotically sense

Coarse embeddings into $\mathrm{Grid}_{n, \infty}$

Coarse embedding: $b\left(d_{X}(u, v)\right) \leqslant d_{Y}(f(u), f(v)) \leqslant B\left(d_{X}(u, v)\right)$.

Theorem (Bernshteyn-Y. '23)

If G be a connected graph with $\rho_{\mathrm{as}}(G)=\rho<\infty$, then for every $\epsilon>0$ there is a coarse embedding f of G into $\operatorname{Grid}_{n, \infty}$ with $n=O_{\epsilon}(\rho)$, and

$$
b(r)=\Omega_{G, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=r .
$$

- Confirm Levin-Linial-London-Rabinovich conjecture in the asympotically sense
- $B(r)=r$ means that f is a contraction.
\rightsquigarrow if $u \sim v$ in G, then $f(u)=f(v)$ or $f(u) \sim f(v)$ in $\operatorname{Grid}_{n, \infty}$

Injective coarse embeddings into $\mathrm{Grid}_{n, \infty}$

Coarse embedding: $b\left(d_{X}(u, v)\right) \leqslant d_{Y}(f(u), f(v)) \leqslant B\left(d_{X}(u, v)\right)$.

Corollary (Bernshteyn-Y. '23)

If G be a connected graph with $\rho_{\text {as }}(G)=\rho<\infty$, then for every $\epsilon>0$ there is an injective coarse embedding f of G into $\operatorname{Grid}_{n, \infty}$ with $n=O_{\epsilon}(\rho)$, and

$$
b(r)=\Omega_{G, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=\max \left\{r, O_{G, \epsilon}(1)\right\}
$$

Injective coarse embeddings into $\mathrm{Grid}_{n, \infty}$

Coarse embedding: $b\left(d_{X}(u, v)\right) \leqslant d_{Y}(f(u), f(v)) \leqslant B\left(d_{X}(u, v)\right)$.

Corollary (Bernshteyn-Y. '23)

If G be a connected graph with $\rho_{\mathrm{as}}(G)=\rho<\infty$, then for every $\epsilon>0$ there is an injective coarse embedding f of G into $\operatorname{Grid}_{n, \infty}$ with $n=O_{\epsilon}(\rho)$, and

$$
b(r)=\Omega_{G, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=\max \left\{r, O_{G, \epsilon}(1)\right\}
$$

Corollary (Bernshteyn-Y. '23)

If G be a connected graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$, then for every $\epsilon>0$ there is an injective homomorphism and coarse embedding f of G into Grid $_{n, \infty}$ with $n=O_{\epsilon}(\rho \log \rho)$,

$$
b(r)=\Omega_{\rho, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=r .
$$

The last result strengthens the Krauthgamer-Lee theorem.

Borel coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Let $\mathbb{Z}^{n} \curvearrowright 2^{\mathbb{Z}^{n}}$ be the Bernoulli shift action of \mathbb{Z}^{n}.
Let $X_{n} \subseteq 2^{\mathbb{Z}^{n}}$ be the free part of this action.
Define ShiftGrid $_{n, \infty}:=\operatorname{Sch}\left(X_{n},\left\{\sigma \in \mathbb{Z}^{n}:\|\sigma\|_{\infty}=1\right\}\right)$.
\rightsquigarrow Every component of ShiftGrid ${ }_{n, \infty}$ is isomorphic to Grid $_{n, \infty}$.

Borel coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Let $\mathbb{Z}^{n} \curvearrowright 2^{\mathbb{Z}^{n}}$ be the Bernoulli shift action of \mathbb{Z}^{n}.
Let $X_{n} \subseteq 2^{\mathbb{Z}^{n}}$ be the free part of this action.
Define ShiftGrid $_{n, \infty}:=\operatorname{Sch}\left(X_{n},\left\{\sigma \in \mathbb{Z}^{n}:\|\sigma\|_{\infty}=1\right\}\right)$.
\rightsquigarrow Every component of ShiftGrid ${ }_{n, \infty}$ is isomorphic to Grid $_{n, \infty}$.

Theorem (Bernshteyn-Y. '23)
If G is a Borel graph with $\rho_{\text {as }}(G)=\rho<\infty$, then for every $\epsilon>0$ there is a Borel coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\rho)$, and

$$
b(r)=\Omega_{G, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=r .
$$

Borel injective coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Theorem (Bernshteyn-Y. '23)
If G is a Borel graph with $\rho_{\text {as }}(G)=\rho<\infty$, then for every $\epsilon>0$ there is a Borel injective coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\rho)$, and

$$
b(r)=\Omega_{G, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=\max \left\{r, O_{G, \epsilon}(1)\right\} .
$$

Theorem (Bernshteyn-Y. '23)

If G is a Borel graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$, then for every $\epsilon>0$ there is a Borel injective homomorphism and coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\rho \log \rho)$,

$$
b(r)=\Omega_{\rho, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=r .
$$

Borel injective coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Theorem (Bernshteyn-Y. '23)
If G is a Borel graph with $\rho_{\text {as }}(G)=\rho<\infty$, then for every $\epsilon>0$ there is a Borel injective coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\rho)$, and

$$
b(r)=\Omega_{G, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=\max \left\{r, O_{G, \epsilon}(1)\right\} .
$$

Theorem (Bernshteyn-Y. '23)

If G is a Borel graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$, then for every $\epsilon>0$ there is a Borel injective homomorphism and coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\rho \log \rho)$,

$$
b(r)=\Omega_{\rho, \epsilon}\left(r^{1-\epsilon}\right), \quad B(r)=r .
$$

$\left\{\text { ShiftGrid }_{n, \infty}\right\}_{n=1}^{\infty}$ are universal for Borel graphs of polynomial growth!

Application to hyperfiniteness

Corollary (Bernshteyn-Y. '23)

All Borel graphs of polynomial growth are hyperfinite.

Application to hyperfiniteness

Corollary (Bernshteyn-Y. '23)

All Borel graphs of polynomial growth are hyperfinite.

PROOF SKETCH. Let G be a Borel graph of polynomial growth.
There is a Borel injection from G to ShiftGrid ${ }_{n, \infty}$ for some $n<\infty$.
By Jackson-Kechris-Louveau, ShiftGrid ${ }_{n, \infty}$ is hyperfinite.
Hyperfiniteness can be "pulled back" via an injection. \square

Application to the existence of toasts

Definition (r-toast)

Let G be a Borel graph. For $r \in \mathbb{N}$, a Borel family $\mathcal{T} \subseteq[V(G)]^{<\infty}$ of finite sets is an r-toast if the following two conditions hold:

1. for every edge $u v \in E(G)$, there is some $K \in \mathcal{T}$ such that $u, v \in K$, and
2. for distinct $K, L \in \mathcal{T}$, we have either $B_{G}(K, r) \cap L=\emptyset, B_{G}(K, r) \subseteq L$, or $B_{G}(L, r) \subseteq K$.

Application to the existence of toasts

Definition (r-toast)

Let G be a Borel graph. For $r \in \mathbb{N}$, a Borel family $\mathcal{T} \subseteq[V(G)]^{<\infty}$ of finite sets is an r-toast if the following two conditions hold:

1. for every edge $u v \in E(G)$, there is some $K \in \mathcal{T}$ such that $u, v \in K$, and
2. for distinct $K, L \in \mathcal{T}$, we have either $B_{G}(K, r) \cap L=\emptyset, B_{G}(K, r) \subseteq L$, or $B_{G}(L, r) \subseteq K$.

Corollary (Bernshteyn-Y. '23)
For every Borel graph G of polynomial growth and every $r \in \mathbb{N}$, there exists an r-toast $\mathcal{T} \subseteq[V(G)]^{<\infty}$.

Application to the existence of toasts

Corollary (Bernshteyn-Y. '23)

For every Borel graph G of polynomial growth and every $r \in \mathbb{N}$, there exists an r-toast $\mathcal{T} \subseteq[V(G)]^{<\infty}$.

Application to the existence of toasts

Corollary (Bernshteyn-Y. '23)

For every Borel graph G of polynomial growth and every $r \in \mathbb{N}$, there exists an r-toast $\mathcal{T} \subseteq[V(G)]^{<\infty}$.

PROOF SKETCH. Let G be a Borel graph of polynomial growth.
There is a Borel injection from G to Shift $\operatorname{Grid}_{n, \infty}$ for some $n<\infty$.
By a result of Gao-Jackson-Krohne-Seward, there is an r-toast
$\mathcal{T}^{*} \subseteq\left[\operatorname{Free}\left(2^{\mathbb{Z}^{n}}\right)\right]^{<\infty}$ for ShiftGrid ${ }_{n, \infty}$.
It suffices to verify that $\mathcal{T}:=\left\{K \cap V(G): K \in \mathcal{T}^{*}\right\}$ is an r-toast for G.

Embedding graphs of polynomial growth into grids

Conjecture (Levin-Linial-London-Rabinovich '95)
If G is a connected graph with $\rho_{\text {ex }}(G)=\rho<\infty$, then

1. G is isomorphic to a subgraph of $\operatorname{Grid}_{n, \infty}$ for some $n<\infty$;
2. moreover, one can take $n=O(\rho)$.

Embedding graphs of polynomial growth into grids

Conjecture (Levin-Linial-London-Rabinovich '95)

If G is a connected graph with $\rho_{\text {ex }}(G)=\rho<\infty$, then

1. G is isomorphic to a subgraph of $\operatorname{Grid}_{n, \infty}$ for some $n<\infty$;
2. moreover, one can take $n=O(\rho)$.

Definition

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by contracting edges.

Embedding graphs of polynomial growth into grids

Conjecture (Levin-Linial-London-Rabinovich '95)

If G is a connected graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$, then

1. G is isomorphic to a subgraph of $\operatorname{Grid}_{n, \infty}$ for some $n<\infty$;
2. moreover, one can take $n=O(\rho)$.

Definition

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by contracting edges.

Theorem (Krauthgamer-Lee '07)

If G is a connected graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$ and excluding a fixed finite minor H, then G is isomorphic to a subgraph of $\operatorname{Grid}_{n, \infty}$ for some $n=O\left(4^{|V(H)|} \rho\right)$.

Borel coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Let $\mathbb{Z}^{n} \curvearrowright 2^{\mathbb{Z}^{n}}$ be the Bernoulli shift action of \mathbb{Z}^{n}.
Let $X_{n} \subseteq 2^{\mathbb{Z}^{n}}$ be the free part of this action.
Define $\operatorname{ShiftGrid}_{n, \infty}:=\operatorname{Sch}\left(X_{n},\left\{\sigma \in \mathbb{Z}^{n}:\|\sigma\|_{\infty}=1\right\}\right)$.
\rightsquigarrow Every component of ShiftGrid ${ }_{n, \infty}$ is isomorphic to Grid $_{n, \infty}$.

Borel coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Let $\mathbb{Z}^{n} \curvearrowright 2^{\mathbb{Z}^{n}}$ be the Bernoulli shift action of \mathbb{Z}^{n}.
Let $X_{n} \subseteq 2^{\mathbb{Z}^{n}}$ be the free part of this action.
Define $\operatorname{ShiftGrid}_{n, \infty}:=\operatorname{Sch}\left(X_{n},\left\{\sigma \in \mathbb{Z}^{n}:\|\sigma\|_{\infty}=1\right\}\right)$.
\rightsquigarrow Every component of ShiftGrid ${ }_{n, \infty}$ is isomorphic to Grid $_{n, \infty}$.

Theorem (Y.)

If G is a Borel graph with $\rho_{\text {as }}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1 / \alpha$ there is a Borel coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\alpha \rho)$, and

$$
b(r)=\Omega_{G, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=r .
$$

Borel injective coarse embeddings into Shift $^{\text {Grid }}{ }_{n, \infty}$

Borel injective coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{as}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1 / \alpha$ there is a Borel injective coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\alpha \rho)$, and

$$
b(r)=\Omega_{G, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=\max \left\{r, O_{G, k, \epsilon}(1)\right\} .
$$

Borel injective coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{as}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1 / \alpha$ there is a Borel injective coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\alpha \rho)$, and

$$
b(r)=\Omega_{G, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=\max \left\{r, O_{G, k, \epsilon}(1)\right\} .
$$

Borel injective coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{as}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1 / \alpha$ there is a Borel injective coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\alpha \rho)$, and

$$
b(r)=\Omega_{G, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=\max \left\{r, O_{G, k, \epsilon}(1)\right\} .
$$

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1 / \alpha$ there is a Borel injective homomorphism and coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}\left(\alpha^{2} \rho \log (k+1)\right)$,

$$
b(r)=\Omega_{\rho, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=r .
$$

Borel injective coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{as}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1 / \alpha$ there is a Borel injective coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\alpha \rho)$, and

$$
b(r)=\Omega_{G, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=\max \left\{r, O_{G, k, \epsilon}(1)\right\} .
$$

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1 / \alpha$ there is a Borel injective homomorphism and coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}\left(\alpha^{2} \rho \log (k+1)\right)$,

$$
b(r)=\Omega_{\rho, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=r .
$$

Borel injective coarse embeddings into ShiftGrid ${ }_{n, \infty}$

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{as}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1 / \alpha$ there is a Borel injective coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}(\alpha \rho)$, and

$$
b(r)=\Omega_{G, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=\max \left\{r, O_{G, k, \epsilon}(1)\right\} .
$$

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1 / \alpha$ there is a Borel injective homomorphism and coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}\left(\alpha^{2} \rho \log (k+1)\right)$,

$$
b(r)=\Omega_{\rho, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=r .
$$

When k is small for small α, we have nice result.

asdim^{N} and $\operatorname{asdim}_{B}^{N}$

Definition (Assouad '82)

Let $\alpha>1$. The Nagata dimension of a locally finite graph G, in symbols $\operatorname{asdim}^{\mathrm{N}}(G)$, is the minimum $d \in \mathbb{N}$ (if it exists) such that there exists $c>0$ satisfying "for every large $r \in \mathbb{N}, G$ has an $(r, c r)$-padded decomposition with $d+1$ layers."

asdim^{N} and $\operatorname{asdim}_{B}^{N}$

Definition (Assouad '82)

Let $\alpha>1$. The Nagata dimension of a locally finite graph G, in symbols $\operatorname{asdim}^{\mathrm{N}}(G)$, is the minimum $d \in \mathbb{N}$ (if it exists) such that there exists $c>0$ satisfying "for every large $r \in \mathbb{N}, G$ has an $(r, c r)$-padded decomposition with $d+1$ layers."

Definition

Let $\alpha>1$. The Borel Nagata dimension of a locally finite Borel graph G, in symbols asdim ${ }_{\mathrm{B}}^{\mathrm{N}}(G)$ is the minimum $d \in \mathbb{N}$ (if it exists) such that there exists $c>0$ satisfying " for every large $r \in \mathbb{N}, G$ has a Borel $(r, c r)$-padded decomposition with $d+1$ layers. "

asdim^{N} and $\operatorname{asdim}_{B}^{N}$

Definition (Assouad '82)

Let $\alpha>1$. The Nagata dimension of a locally finite graph G, in symbols $\operatorname{asdim}^{\mathrm{N}}(G)$, is the minimum $d \in \mathbb{N}$ (if it exists) such that there exists $c>0$ satisfying "for every large $r \in \mathbb{N}, G$ has an $(r, c r)$-padded decomposition with $d+1$ layers."

Definition

Let $\alpha>1$. The Borel Nagata dimension of a locally finite Borel graph G, in symbols $\operatorname{asdim}_{\mathrm{B}}^{\mathrm{N}}(G)$ is the minimum $d \in \mathbb{N}$ (if it exists) such that there exists $c>0$ satisfying " for every large $r \in \mathbb{N}, G$ has a Borel $(r, c r)$-padded decomposition with $d+1$ layers.

Theorem (Papasoglu '21)
There exists some graph G with $\rho_{\text {as }}(G)=1$ and $\operatorname{asdim}^{\mathrm{N}}(G)=\infty$.

Minor-excluded Graphs

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by contracting edges.

Minor-excluded Graphs

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by contracting edges.

Minor-excluded Graphs

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by contracting edges.

Example

Planar graphs, outerplanar graphs, trees, ..

Minor-excluded Graphs

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by contracting edges.

Example

Planar graphs, outerplanar graphs, trees, ..

Theorem (Liu '23, Distel '23)

If G is a graph excluding a fixed finite minor, then $\operatorname{asdim}^{\mathrm{N}}(G) \leq 2$.

Minor-excluded Graphs

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by contracting edges.

Example

Planar graphs, outerplanar graphs, trees, ..

Theorem (Liu '23, Distel '23)

If G is a graph excluding a fixed finite minor, then $\operatorname{asdim}^{\mathrm{N}}(G) \leq 2$.
Apply techniques in [Conley-Jackson-Marks-Seward-Tucker-Drob '20], we have
Theorem (Y.)
If $\operatorname{asdim}_{\mathrm{B}}(G)<\infty$, then $\operatorname{asdim}_{\mathrm{B}}^{\mathrm{N}}(G)=\operatorname{asdim}^{\mathrm{N}}(G)$.

Corollary (Y.)

If G is a Borel graph with $\rho_{\text {as }}(G)=\rho<\infty$ and excluding a fixed finite minor, then $\operatorname{asdim}_{\mathrm{B}}^{\mathrm{N}}(G) \leq 2$.

Minor-excluded graphs

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1 / \alpha$ there is a Borel injective homomorphism and coarse embedding f of G into $\operatorname{ShiftGrid}_{n, \infty}$ with $n=O_{\epsilon}\left(\alpha^{2} \rho \log (k+1)\right)$,

$$
b(r)=\Omega_{\rho, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=r .
$$

Minor-excluded graphs

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1$ / α there is a Borel injective homomorphism and coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}\left(\alpha^{2} \rho \log (k+1)\right)$,

$$
b(r)=\Omega_{\rho, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=r
$$

Corollary (Y.)

If G is a Borel graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$ and excluding a fixed finite minor, then for every $0<\epsilon<1$ there is a Borel injective map f from G into ShiftGrid ${ }_{n, \infty}$, where $n=O_{\epsilon}(\rho)$, such that for all $u, v \in V(G)$,

$$
\operatorname{dist}_{G}(u, v) \geqslant \operatorname{dist}_{\infty}(f(u), f(v))=\Omega_{\rho, \epsilon}\left(\operatorname{dist}_{G}(u, v)^{1-\epsilon}\right)
$$

Minor-excluded graphs

Theorem (Y.)

If G is a Borel graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$ and $\operatorname{asdim}_{\mathrm{B}}^{\alpha}(G)=k$ with some $\alpha>1$, then for every $0<\epsilon<1$ / α there is a Borel injective homomorphism and coarse embedding f of G into ShiftGrid ${ }_{n, \infty}$ with $n=O_{\epsilon}\left(\alpha^{2} \rho \log (k+1)\right)$,

$$
b(r)=\Omega_{\rho, k, \epsilon}\left(r^{1 / \alpha-\epsilon}\right), \quad B(r)=r
$$

Corollary (Y.)

If G is a Borel graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$ and excluding a fixed finite minor, then for every $0<\epsilon<1$ there is a Borel injective map f from G into ShiftGrid ${ }_{n, \infty}$, where $n=O_{\epsilon}(\rho)$, such that for all $u, v \in V(G)$,

$$
\operatorname{dist}_{G}(u, v) \geqslant \operatorname{dist}_{\infty}(f(u), f(v))=\Omega_{\rho, \epsilon}\left(\operatorname{dist}_{G}(u, v)^{1-\epsilon}\right)
$$

Theorem (Krauthgamer-Lee '07)

If G is a connected graph with $\rho_{\mathrm{ex}}(G)=\rho<\infty$ and excluding a fixed finite minor H, then G is isomorphic to a subgraph of $\operatorname{Grid}_{n, \infty}$ for some $n=O\left(4^{|V(H)|} \rho\right)$.

Open problems

Open problems

- Hyperfiniteness of Borel graphs of subexponential growth?

THANK YOU
 Q\&A

Jing Yu
jingyu@gatech.edu

