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Graphs of polynomial growth

All metrics are extended (i.e., distance can be infinite).

The growth function of a graph G: γG(r) := supu∈V (G) |BG(u, r)|.

Definition

A graph G is of polynomial growth if γG is bounded by polynomial.

For r ⩾ 1, define ρ(G, r) := log γG(r)
log(r+1) . ⇝ γG(r) = (r + 1)ρ(G,r).

Growth rates:

• exact growth rate: ρex(G) := supr⩾1 ρ(G, r).

• asymptotic growth rate: ρas(G) := lim supr→∞ ρ(G, r).

Remarks:

• Polynomial growth ⇐⇒ ρex(G) < ∞ ⇐⇒ ρas(G) < ∞.

• ρex(G) ⩾ ρas(G) for all G.

• If G is finite, then ρas(G) = 0, while ρex(G) can be arbitrarily large.
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Examples: Gridn and Gridn,∞

G V(G) E(G)

Gridn Zn {uv : u, v ∈ Zn, ∥u− v∥1 = 1}
Gridn,∞ Zn {uv : u, v ∈ Zn, ∥u− v∥∞ = 1}

Figure: Fragments of the graphs Grid2 (left) and Grid2,∞ (right).

ρex = Θ(n), ρas = n.
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Groups of polynomial growth

A finitely generated group Γ is of polynomial growth if its Cayley graph with
respect to some (equivalently, every) finite generating set is of polynomial growth.

The asymptotic growth rate does not depend on the choice of the generating set,
while the exact growth rate does.

Grid graphs: Zn is of polynomial growth

Theorem (Gromov ’81)

A finitely generated group Γ is of polynomial growth if and only if it is virtually
nilpotent.
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Asymptotic dimension
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asdim in terms of padded decompositions

Given a partition P of a set X and an element x ∈ X, we let [x]P denote the part
containing x.

An r-padded decomposition of a locally finite graph G with m layers is a family
{P1,P2, . . . ,Pm} of partitions of V (G) into finite sets of uniformly bounded
diameter such that for all u ∈ V (G), there is some Pi such that BG(u, r) ⊆ [u]Pi

.

Definition (Gromov ’93)

The asymptotic dimension of a locally finite graph G, in symbols asdim(G), is the
minimum d ∈ N (if it exists) such that for every r ∈ N, G has an r-padded
decomposition with d+ 1 layers.
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Examples

Example

• asdimRn = asdimZn = n.

• Trees have asdim ≤ 1.

• Bonamy–Bousquet–Esperet–Groenland–Liu–Pirot–Scott, Jørgensen–Lang:
Planar graphs have asdim ≤ 2.

• Papasoglu: Every graph G satisfies asdim(G) ⩽ ρas(G).

• · · ·
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asdim(R) = 1
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asdim(R2) = 2
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asdim(R2) = 2
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asdim(R2) = 2
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asdimα in terms of padded decompositions

An (r,D)-padded decomposition of a locally finite graph G with m layers is a
family {P1,P2, . . . ,Pm} of partitions of V (G) into finite sets of diameter bounded
by D such that for all u ∈ V (G), there is some Pi such that BG(u, r) ⊆ [u]Pi

.

Definition

Let α > 1. The asymptotic α-power dimension of a locally finite graph G, in
symbols asdimα(G), is the minimum d ∈ N (if it exists) such that for every large
r ∈ N, G has an (r, rα)-padded decomposition with d+ 1 layers.

asdim(G) ≤ asdimα(G).
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asdimα of graphs of polynomial growth

Theorem (Papasoglu ’21)

Every graph G satisfies asdim(G) ⩽ ⌊ρas(G)⌋.

• This is tight.

• Papasoglu’s proof is a clever induction on ⌊ρas(G)⌋.
• We show some stronger result:

Theorem (Bernshteyn–Y.)

Every graph G satisfies asdimα(G) ⩽ ⌊ρas(G)⌋ for all α >
⌊ρas(G)⌋+ 1

⌊ρas(G)⌋+ 1− ρas(G)
.

• Moreover, our proof approach also works in the setting of Borel graphs and
yields a Borel version of this theorem.
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Borel graphs

Definition

A graph G is Borel if V (G) is a Polish (or standard Borel) space and E(G) is a
Borel subset of V (G)× V (G).

Example

Let Γ be a group with a finite generating set S ⊆ Γ.

For a Borel action Γ ↷ X on a Polish space X, define the Schreier graph
Sch(X,S): V = X, E = {{x, σ · x} : x ∈ X, σ ∈ S, σ · x ̸= x}.

Components of Sch(X,S) ⇝ orbits of the action Γ ↷ X.

If the action Γ ↷ X is free, every component of Sch(X,S) is isomorphic to the
Cayley graph of Γ.
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Borel asymptotic dimension

A partition P of a Polish space X into finite sets is Borel if the set
{(x, y) ∈ X2 : [x]P = [y]P} is Borel.

Definition

The Borel asymptotic dimension of a locally finite Borel graph G, in symbols
asdimB(G) is the minimum d ∈ N (if it exists) such that for every r ∈ N, G has a
Borel r-padded decomposition with d+ 1 layers.

• Introduced by Conley, Jackson, Marks, Seward, and Tucker-Drob in 2020.

• asdim(G) ⩽ asdimB(G).

• If asdimB(G) < ∞, then asdimB(G) = asdim(G).
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Borel asymptotic α-power dimension

A partition P of a Polish space X into finite sets is Borel if the set
{(x, y) ∈ X2 : [x]P = [y]P} is Borel.

Definition

Let α > 1. The Borel asymptotic α-power dimension of a locally finite Borel graph
G, in symbols asdimα

B(G) is the minimum d ∈ N (if it exists) such that for every
large r ∈ N, G has a Borel (r, rα)-padded decomposition with d+ 1 layers.

Theorem (Bernshteyn–Y. ’23)

Every locally finite Borel graph G satisfies asdimα
B(G) ⩽ ⌊ρas(G)⌋ for all

α >
⌊ρas(G)⌋+ 1

⌊ρas(G)⌋+ 1− ρas(G)
.
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Hyperfiniteness and Marks’ question

Definition (Weiss ’84, Slaman–Steel ’88)

A Borel graph is hyperfinite if there is an increasing sequence G0 ⊆ G1 ⊆ G2 ⊆ · · ·
of Borel subgraphs of G with finite components such that G =

⋃∞
i=0 Gi.

Question (Marks ’22)

Is every Borel graph of polynomial growth hyperfinite?

Theorem (Conley–Jackson–Marks–Seward–Tucker-Drob ’20)

Let G be a locally finite Borel graph. If asdimB(G) < ∞, then G is hyperfinite.
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Hyperfiniteness and Marks’ question

Theorem (Conley–Jackson–Marks–Seward–Tucker-Drob ’20)
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B(G) ⩽ ρas(G) for all

α >
⌊ρas(G)⌋+ 1

⌊ρas(G)⌋+ 1− ρas(G)
.

Since asdimB(G) ≤ asdimα
B(G), we have

Corollary (Bernshteyn–Y. ’23)

Every Borel graph of polynomial growth is hyperfinite.
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Embeddings into grids
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Embedding graphs of polynomial growth into grids

Conjecture (Levin–Linial–London–Rabinovich ’95)

If G is a connected graph with ρex(G) = ρ < ∞, then

1. G is isomorphic to a subgraph of Gridn,∞ for some n < ∞;

2. moreover, one can take n = O(ρ).

Theorem (Krauthgamer–Lee ’07)

If G is a connected graph with ρex(G) = ρ < ∞, then

1. G is isomorphic to a subgraph of Gridn,∞ with n = O(ρ log ρ);

2. the bound O(ρ log ρ) is optimal.

Question (Papasoglu ’21)

Let G be a graph of polynomial growth rate ρ. Is there a coarse embedding
f : G → Gridn,∞ with n = O(ρ log ρ)?
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Coarse embeddings

Definition (Gromov ’93)

Given a pair of metric spaces (X, dX), (Y, dY ), a mapping f : X → Y is called a
coarse embedding if there exist non-decreasing functions b, B : [0,∞] → [0,∞]
such that:

• b(∞) = ∞ and B(x) < ∞ for x < ∞;

• for all u, v ∈ X, b(dX(u, v)) ⩽ dY (f(u), f(v)) ⩽ B(dX(u, v)).

• Let G be the Baumslag-Solitar group BS(1, 2) = ⟨a, t|t−1at = a2⟩. Let H be
⟨a⟩. Then the inclusion i : H → G is a coarse embedding:
We can take b(x) = log x and B(x) = x.

• Generally, let G be a finitely generated group and let H be a finitely generated
subgroup of G. Then the inclusion i : H → G is a coarse embedding.

• A coarse embedding may be not injective, but it is asymptotically injective:
preimages of points have uniformly bounded diameter.
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Coarse embeddings into Gridn,∞

Coarse embedding: b(dX(u, v)) ⩽ dY (f(u), f(v)) ⩽ B(dX(u, v)).

Theorem (Bernshteyn–Y. ’23)

If G be a connected graph with ρas(G) = ρ < ∞, then for every ϵ > 0 there is a
coarse embedding f of G into Gridn,∞ with n = Oϵ(ρ), and

b(r) = ΩG,ϵ(r
1−ϵ), B(r) = r.

• Confirm Levin–Linial–London–Rabinovich conjecture in the asympotically
sense

• B(r) = r means that f is a contraction.
⇝ if u ∼ v in G, then f(u) = f(v) or f(u) ∼ f(v) in Gridn,∞
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Injective coarse embeddings into Gridn,∞

Coarse embedding: b(dX(u, v)) ⩽ dY (f(u), f(v)) ⩽ B(dX(u, v)).

Corollary (Bernshteyn–Y. ’23)

If G be a connected graph with ρas(G) = ρ < ∞, then for every ϵ > 0 there is an
injective coarse embedding f of G into Gridn,∞ with n = Oϵ(ρ), and

b(r) = ΩG,ϵ(r
1−ϵ), B(r) = max{r,OG,ϵ(1)}.

Corollary (Bernshteyn–Y. ’23)

If G be a connected graph with ρex(G) = ρ < ∞, then for every ϵ > 0 there is an
injective homomorphism and coarse embedding f of G into Gridn,∞ with
n = Oϵ(ρ log ρ),

b(r) = Ωρ,ϵ(r
1−ϵ), B(r) = r.

The last result strengthens the Krauthgamer–Lee theorem.
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Borel coarse embeddings into ShiftGridn,∞

Let Zn ↷ 2Z
n

be the Bernoulli shift action of Zn.

Let Xn ⊆ 2Z
n

be the free part of this action.

Define ShiftGridn,∞ := Sch(Xn, {σ ∈ Zn : ∥σ∥∞ = 1}).

⇝ Every component of ShiftGridn,∞ is isomorphic to Gridn,∞.

Theorem (Bernshteyn–Y. ’23)

If G is a Borel graph with ρas(G) = ρ < ∞, then for every ϵ > 0 there is a Borel
coarse embedding f of G into ShiftGridn,∞ with n = Oϵ(ρ), and

b(r) = ΩG,ϵ(r
1−ϵ), B(r) = r.
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Borel injective coarse embeddings into ShiftGridn,∞

Theorem (Bernshteyn–Y. ’23)

If G is a Borel graph with ρas(G) = ρ < ∞, then for every ϵ > 0 there is a Borel
injective coarse embedding f of G into ShiftGridn,∞ with n = Oϵ(ρ), and

b(r) = ΩG,ϵ(r
1−ϵ), B(r) = max{r,OG,ϵ(1)}.

Theorem (Bernshteyn–Y. ’23)

If G is a Borel graph with ρex(G) = ρ < ∞, then for every ϵ > 0 there is a Borel
injective homomorphism and coarse embedding f of G into ShiftGridn,∞ with
n = Oϵ(ρ log ρ),

b(r) = Ωρ,ϵ(r
1−ϵ), B(r) = r.

{ShiftGridn,∞}∞n=1 are universal for Borel graphs of polynomial growth!

70 / 102



Borel injective coarse embeddings into ShiftGridn,∞

Theorem (Bernshteyn–Y. ’23)

If G is a Borel graph with ρas(G) = ρ < ∞, then for every ϵ > 0 there is a Borel
injective coarse embedding f of G into ShiftGridn,∞ with n = Oϵ(ρ), and

b(r) = ΩG,ϵ(r
1−ϵ), B(r) = max{r,OG,ϵ(1)}.

Theorem (Bernshteyn–Y. ’23)

If G is a Borel graph with ρex(G) = ρ < ∞, then for every ϵ > 0 there is a Borel
injective homomorphism and coarse embedding f of G into ShiftGridn,∞ with
n = Oϵ(ρ log ρ),

b(r) = Ωρ,ϵ(r
1−ϵ), B(r) = r.

{ShiftGridn,∞}∞n=1 are universal for Borel graphs of polynomial growth!

71 / 102



Application to hyperfiniteness

Corollary (Bernshteyn–Y. ’23)

All Borel graphs of polynomial growth are hyperfinite.

PROOF SKETCH. Let G be a Borel graph of polynomial growth.

There is a Borel injection from G to ShiftGridn,∞ for some n < ∞.

By Jackson–Kechris–Louveau, ShiftGridn,∞ is hyperfinite.

Hyperfiniteness can be “pulled back” via an injection.
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Application to the existence of toasts

Definition (r-toast)

Let G be a Borel graph. For r ∈ N, a Borel family T ⊆ [V (G)]<∞ of finite sets is
an r-toast if the following two conditions hold:

1. for every edge uv ∈ E(G), there is some K ∈ T such that u, v ∈ K, and

2. for distinct K, L ∈ T , we have either BG(K, r) ∩ L = ∅, BG(K, r) ⊆ L, or
BG(L, r) ⊆ K.

Corollary (Bernshteyn–Y. ’23)

For every Borel graph G of polynomial growth and every r ∈ N, there exists an
r-toast T ⊆ [V (G)]<∞.
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Application to the existence of toasts

Corollary (Bernshteyn–Y. ’23)

For every Borel graph G of polynomial growth and every r ∈ N, there exists an
r-toast T ⊆ [V (G)]<∞.

PROOF SKETCH. Let G be a Borel graph of polynomial growth.

There is a Borel injection from G to ShiftGridn,∞ for some n < ∞.

By a result of Gao–Jackson–Krohne–Seward, there is an r-toast
T ∗ ⊆ [Free(2Z

n

)]<∞ for ShiftGridn,∞.

It suffices to verify that T := {K ∩ V (G) : K ∈ T ∗} is an r-toast for G.
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Embedding graphs of polynomial growth into grids

Conjecture (Levin–Linial–London–Rabinovich ’95)

If G is a connected graph with ρex(G) = ρ < ∞, then

1. G is isomorphic to a subgraph of Gridn,∞ for some n < ∞;

2. moreover, one can take n = O(ρ).

Definition

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by
contracting edges.

Theorem (Krauthgamer–Lee ’07)

If G is a connected graph with ρex(G) = ρ < ∞ and excluding a fixed finite minor
H, then G is isomorphic to a subgraph of Gridn,∞ for some n = O(4|V (H)|ρ).
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Borel coarse embeddings into ShiftGridn,∞

Let Zn ↷ 2Z
n

be the Bernoulli shift action of Zn.

Let Xn ⊆ 2Z
n

be the free part of this action.

Define ShiftGridn,∞ := Sch(Xn, {σ ∈ Zn : ∥σ∥∞ = 1}).

⇝ Every component of ShiftGridn,∞ is isomorphic to Gridn,∞.

Theorem (Y.)

If G is a Borel graph with ρas(G) = ρ < ∞ and asdimα
B(G) = k with some α > 1,

then for every 0 < ϵ < 1/α there is a Borel coarse embedding f of G into
ShiftGridn,∞ with n = Oϵ(αρ), and

b(r) = ΩG,k,ϵ(r
1/α−ϵ), B(r) = r.
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Borel injective coarse embeddings into ShiftGridn,∞

Theorem (Y.)

If G is a Borel graph with ρas(G) = ρ < ∞ and asdimα
B(G) = k with some α > 1,

then for every 0 < ϵ < 1/α there is a Borel injective coarse embedding f of G into
ShiftGridn,∞ with n = Oϵ(αρ), and

b(r) = ΩG,k,ϵ(r
1/α−ϵ), B(r) = max{r,OG,k,ϵ(1)}.

Theorem (Y.)

If G is a Borel graph with ρex(G) = ρ < ∞ and asdimα
B(G) = k with some α > 1,

then for every 0 < ϵ < 1/α there is a Borel injective homomorphism and coarse
embedding f of G into ShiftGridn,∞ with n = Oϵ(α

2ρ log(k + 1)),

b(r) = Ωρ,k,ϵ(r
1/α−ϵ), B(r) = r.

When k is small for small α, we have nice result.
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asdimN and asdimN
B

Definition (Assouad ’82)

Let α > 1. The Nagata dimension of a locally finite graph G, in symbols
asdimN(G), is the minimum d ∈ N (if it exists) such that there exists c > 0
satisfying “for every large r ∈ N, G has an (r, cr)-padded decomposition with
d+ 1 layers.”

Definition

Let α > 1. The Borel Nagata dimension of a locally finite Borel graph G, in
symbols asdimN

B(G) is the minimum d ∈ N (if it exists) such that there exists
c > 0 satisfying “ for every large r ∈ N, G has a Borel (r, cr)-padded
decomposition with d+ 1 layers. ”

Theorem (Papasoglu ’21)

There exists some graph G with ρas(G) = 1 and asdimN(G) = ∞.
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Minor-excluded Graphs

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by
contracting edges.

Example

Planar graphs, outerplanar graphs, trees, ..

Theorem (Liu ’23, Distel ’23)

If G is a graph excluding a fixed finite minor, then asdimN(G) ≤ 2.

Apply techniques in [Conley–Jackson–Marks–Seward–Tucker-Drob ’20], we have

Theorem (Y.)

If asdimB(G) < ∞, then asdimN
B(G) = asdimN(G).

Corollary (Y.)

If G is a Borel graph with ρas(G) = ρ < ∞ and excluding a fixed finite minor, then
asdimN

B(G) ≤ 2.

92 / 102



Minor-excluded Graphs

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by
contracting edges.

Example

Planar graphs, outerplanar graphs, trees, ..

Theorem (Liu ’23, Distel ’23)

If G is a graph excluding a fixed finite minor, then asdimN(G) ≤ 2.

Apply techniques in [Conley–Jackson–Marks–Seward–Tucker-Drob ’20], we have

Theorem (Y.)

If asdimB(G) < ∞, then asdimN
B(G) = asdimN(G).

Corollary (Y.)

If G is a Borel graph with ρas(G) = ρ < ∞ and excluding a fixed finite minor, then
asdimN

B(G) ≤ 2.

93 / 102



Minor-excluded Graphs

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by
contracting edges.

Example

Planar graphs, outerplanar graphs, trees, ..

Theorem (Liu ’23, Distel ’23)

If G is a graph excluding a fixed finite minor, then asdimN(G) ≤ 2.

Apply techniques in [Conley–Jackson–Marks–Seward–Tucker-Drob ’20], we have

Theorem (Y.)

If asdimB(G) < ∞, then asdimN
B(G) = asdimN(G).

Corollary (Y.)

If G is a Borel graph with ρas(G) = ρ < ∞ and excluding a fixed finite minor, then
asdimN

B(G) ≤ 2.

94 / 102



Minor-excluded Graphs

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by
contracting edges.

Example

Planar graphs, outerplanar graphs, trees, ..

Theorem (Liu ’23, Distel ’23)

If G is a graph excluding a fixed finite minor, then asdimN(G) ≤ 2.

Apply techniques in [Conley–Jackson–Marks–Seward–Tucker-Drob ’20], we have

Theorem (Y.)

If asdimB(G) < ∞, then asdimN
B(G) = asdimN(G).

Corollary (Y.)

If G is a Borel graph with ρas(G) = ρ < ∞ and excluding a fixed finite minor, then
asdimN

B(G) ≤ 2.

95 / 102



Minor-excluded Graphs

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by
contracting edges.

Example

Planar graphs, outerplanar graphs, trees, ..

Theorem (Liu ’23, Distel ’23)

If G is a graph excluding a fixed finite minor, then asdimN(G) ≤ 2.

Apply techniques in [Conley–Jackson–Marks–Seward–Tucker-Drob ’20], we have

Theorem (Y.)

If asdimB(G) < ∞, then asdimN
B(G) = asdimN(G).

Corollary (Y.)

If G is a Borel graph with ρas(G) = ρ < ∞ and excluding a fixed finite minor, then
asdimN

B(G) ≤ 2.

96 / 102



Minor-excluded graphs

Theorem (Y.)

If G is a Borel graph with ρex(G) = ρ < ∞ and asdimα
B(G) = k with some α > 1,

then for every 0 < ϵ < 1/α there is a Borel injective homomorphism and coarse
embedding f of G into ShiftGridn,∞ with n = Oϵ(α

2ρ log(k + 1)),

b(r) = Ωρ,k,ϵ(r
1/α−ϵ), B(r) = r.

Corollary (Y.)

If G is a Borel graph with ρex(G) = ρ < ∞ and excluding a fixed finite minor, then
for every 0 < ϵ < 1 there is a Borel injective map f from G into ShiftGridn,∞,
where n = Oϵ(ρ), such that for all u, v ∈ V (G),

distG(u, v) ⩾ dist∞(f(u), f(v)) = Ωρ,ϵ(distG(u, v)
1−ϵ).

Theorem (Krauthgamer–Lee ’07)

If G is a connected graph with ρex(G) = ρ < ∞ and excluding a fixed finite minor
H, then G is isomorphic to a subgraph of Gridn,∞ for some n = O(4|V (H)|ρ).
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Open problems

• Hyperfiniteness of Borel graphs of subexponential growth?
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